
Security Assessment

Artemis Token

Jun 1st, 2021

Summary

This report has been prepared for Artemis Token smart contracts, to discover issues and vulnerabilities in

the source code of their Smart Contract as well as any contract dependencies that were not part of an

officially recognized library. A comprehensive examination has been performed, utilizing Dynamic

Analysis, Static Analysis, and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced

by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices. We suggest

recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases given they are currently missing in the

repository;

Provide more comments per each function for readability, especially contracts are verified in

public;

Provide more transparency on privileged activities once the protocol is live.

No notable vulnerabilities were identified in the codebase and it makes use of the latest security

principles and style guidelines. There were certain optimizations observed as well as security principles

that can optionally be applied to the codebase to fortify the codebase to a greater extent.

Artemis Token Security Assessment

Overview

Project Summary

Project Name Artemis Token

Description A typical ERC-20 implementation with additional features.

Platform Ethereum

Language Solidity

Codebase

1. https://etherscan.io/address/0x28fDA76721a8077A5dE802Ab0212849B8c384

29E#code

2. https://github.com/artemisguardian/artemisguardian

Commits db691894fd826882580e0dcca00f158aeec3e824

Audit Summary

Delivery Date Jun 01, 2021

Audit Methodology Static Analysis, Manual Review

Key Components ERC-20 Token

Vulnerability Summary

Total Issues 11

Critical 0

Major 0

Minor 3

Informational 8

Discussion 0

Artemis Token Security Assessment

Audit Scope

ID file SHA256 Checksum

AAV Artemis.sol 4d1fbda5a8a4285ee90b139d0d2a3b4011ec2c9c4dc9ed68bc6a3cdcff0da9be

Artemis Token Security Assessment

Findings

ID Title Category Severity Status

AAV-01 Unlocked Compiler Version Language Specific Informational Resolved

AAV-02 Mutability Specifiers Missing Gas Optimization Informational Resolved

AAV-03 Order of Layout Coding Style Informational Acknowledged

AAV-04
Unchecked Value of ERC-20

transfer() /transferFrom() Call
Volatile Code Minor Acknowledged

AAV-05
Potential Over-centralization of

Functionality

Centralization /

Privilege
Minor Acknowledged

AAV-06 Redundant Contract
Gas Optimization,

Coding Style
Informational Resolved

AAV-07 Ambiguous Logic Logical Issue Minor Acknowledged

AAV-08 Redundant else Clause Gas Optimization Informational Resolved

AAV-09 Function Mutability Optimization Gas Optimization Informational Resolved

AAV-10 Inexistent Input Sanitization Logical Issue Informational Resolved

AAV-11 Unused State Variable Gas Optimization Informational Resolved

Artemis Token Security Assessment

11
Total Issues

Critical 0 (0.00%)

Major 0 (0.00%)

Minor 3 (27.27%)

Informational 8 (72.73%)

Discussion 0 (0.00%)

AAV-01 | Unlocked Compiler Version

Category Severity Location Status

Language Specific Informational Artemis.sol: 705 Resolved

Description

The contract specifies an unlocked compiler version. An unlocked compiler version in the source code of

the contract permits the user to compile it at or above a particular version. This, in turn, leads to

differences in the generated bytecode between compilations due to differing compiler version numbers.

This can lead to an ambiguity when debugging as compiler specific bugs may occur in the codebase that

would be hard to identify over a span of multiple compiler versions rather than a specific one.

Recommendation

We advise that the compiler version is instead locked at the lowest version possible that the contract can

be compiled at. For example, for version v0.6.2 the contract should contain the following line:

pragma solidity 0.6.2;pragma solidity 0.6.2;

Alleviation

The development team opted to consider our references and locked the compiler to version 0.6.12 .

Artemis Token Security Assessment

AAV-02 | Mutability Specifiers Missing

Category Severity Location Status

Gas Optimization Informational Artemis.sol: 1158, 1165 Resolved

Description

The linked variables are assigned to only once, during their contract-level declaration.

Recommendation

We advise that the constant keyword is introduced in the variable declaration to greatly optimize the gas

cost involved in utilizing the variable.

Alleviation

The development team opted to consider our references and changed the mutability of the

MINTABLE_SUPPLY state variable to constant , as MAX_SUPPLY was removed from the codebase.

Artemis Token Security Assessment

AAV-03 | Order of Layout

Category Severity Location Status

Coding Style Informational Artemis.sol: 1239~1255 Acknowledged

Description

The order of layout in the Artemis contract does not follow the Solidity style guide.

Recommendation

We advise to re-arrange the layout of the linked contract.

Alleviation

The development team has acknowledged this exhibit but decided to not apply its remediation in the

current version of the codebase.

Artemis Token Security Assessment

AAV-04 | Unchecked Value of ERC-20 transfer()/transferFrom()

Call

Category Severity Location Status

Volatile Code Minor Artemis.sol: 1275 Acknowledged

Description

The linked transfer() /transferFrom() invocations do not check the return value of the function call

which should yield a true result in case of a proper ERC-20 implementation.

Recommendation

As many tokens do not follow the ERC-20 standard faithfully, they may not return a bool variable in this

function's execution meaning that simply expecting it can cause incompatibility with these types of

tokens. Instead, we advise that OpenZeppelin's SafeERC20.sol implementation is utilized for interacting

with the transfer() and transferFrom() functions of ERC-20 tokens. The OZ implementation optionally

checks for a return value rendering compatible with all ERC-20 token implementations.

Alleviation

The development team has acknowledged this exhibit but decided to not apply its remediation in the

current version of the codebase.

Artemis Token Security Assessment

AAV-05 | Potential Over-centralization of Functionality

Category Severity Location Status

Centralization / Privilege Minor Artemis.sol: 1274~1276 Acknowledged

Description

The linked function is meant to be used in an edge-case situation whereby the contract owner can claim

the contract's remaining tokens.

Recommendation

We advise this functionality to be guarded by either a time delay to ensure that the normal course of

operation of the contract has progressed.

Alleviation

The development team has acknowledged this exhibit but decided to not apply its remediation in the

current version of the codebase.

Artemis Token Security Assessment

AAV-06 | Redundant Contract

Category Severity Location Status

Gas Optimization, Coding Style Informational Artemis.sol: 1013~1149 Resolved

Description

The TestDateTime contract does not affect the functionality of the codebase and appears to be leftover

from test code .

Recommendation

We advise that they are removed to better prepare the code for production environments.

Alleviation

The development team opted to consider our references and removed the redundant code.

Artemis Token Security Assessment

AAV-07 | Ambiguous Logic

Category Severity Location Status

Logical Issue Minor Artemis.sol: 1182~1184 Acknowledged

Description

The linked if clause allows the _teamWallet address for an initial token withdrawal, despite the thirty-

day ban.

Recommendation

We advise to revise the linked functionality.

Alleviation

The development team has acknowledged this exhibit, commenting that the linked code segment

implements intended functionality.

Artemis Token Security Assessment

AAV-08 | Redundant else Clause

Category Severity Location Status

Gas Optimization Informational Artemis.sol: 1189~1191 Resolved

Description

The linked else clause is redundant, as it branches out into the default scenario.

Recommendation

We advise to remove the linked else clause.

Alleviation

The development team opted to consider our references and removed the redundant code.

Artemis Token Security Assessment

AAV-09 | Function Mutability Optimization

Category Severity Location Status

Gas Optimization Informational Artemis.sol: 1181 Resolved

Description

The checkTeamWalletWithdrawalEligiblity() function does not modify state of the contract.

Recommendation

We advise to restrict the linked function's mutability to view .

Alleviation

The development team opted to consider our references and added the view attribute to the linked

function.

Artemis Token Security Assessment

AAV-10 | Inexistent Input Sanitization

Category Severity Location Status

Logical Issue Informational Artemis.sol: 1239~1255 Resolved

Description

The constructor function fails to check the values of the arguments.

Recommendation

We advise to add require statements, checking the input values against the zero address.

Alleviation

The development team opted to consider our references and added require statements, ensuring

inequality of the input addresses with the zero address.

Artemis Token Security Assessment

AAV-11 | Unused State Variable

Category Severity Location Status

Gas Optimization Informational Artemis.sol: 1158 Resolved

Description

The MAX_SUPPLY state variable remains unused throughout the codebase.

Recommendation

We advise to remove redundant code.

Alleviation

The development team opted to consider our references and removed the MAX_SUPPLY state variable

from the codebase.

Artemis Token Security Assessment

Appendix

Finding Categories

Gas Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more

optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical Operations

Mathematical Operation findings relate to mishandling of math formulas, such as overflows, incorrect

operations etc.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only functions

being invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that

may result in a vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory, such as the result of a

struct assignment operation affecting an in-memory struct rather than an in-storage one.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private

or delete.

Coding Style

Artemis Token Security Assessment

Coding Style findings usually do not affect the generated byte-code but rather comment on how to make

the codebase more legible and, as a result, easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different

code, such as a constructor assignment imposing different require statements on the input variables than

a setter function.

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase in their raw format

and should otherwise be specified as constant contract variables aiding in their legibility and

maintainability.

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible to compile

using the specified version of the project.

Artemis Token Security Assessment

Disclaimer

This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to the Company in connection with the Agreement. This

report provided in connection with the Services set forth in the Agreement shall be used by the Company

only to the extent permitted under the terms and conditions set forth in the Agreement. This report may

not be transmitted, disclosed, referred to or relied upon by any person for any purposes without CertiK’s

prior written consent.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project

or team. This report is not, nor should be considered, an indication of the economics or value of any

“product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as

investment advice of any sort. This report represents an extensive assessing process intending to help

our customers increase the quality of their code while reducing the high level of risk presented by

cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is

that each company and individual are responsible for their own due diligence and continuous security.

CertiK’s goal is to help reduce the attack vectors and the high level of variance associated with utilizing

new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

Artemis Token Security Assessment

About

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-class

technical expertise, alongside our proprietary, innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

Artemis Token Security Assessment

